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The stability of a boundary layer on a heated flat plate is investigated in the linear 
regime. The flow is shown to be unstable to longitudinal vortex structures which 
develop in a non-parallel manner in the streamwise direction. Solutions of the non- 
parallel equations are obtained numerically at  O( 1)  values of the appropriate 
stability parameter, i.e. the Grashof number. We investigate the particular cases in 
which instability is induced by localized or distributed wall roughness or non- 
uniform wall heating. The case when the vortices are induced by free-stream 
disturbances is also considered. We then investigate the high-Grashof-number limit 
and the fastest growing mode. The fastest growing mode is found to be governed by 
a quasi-parallel theory and occurs at  high wavenumbers. The wavenumber and 
growth rate of the fastest growing mode are found in closed form. At low 
wavenumbers the vortex instability is shown to be closely related to Tollmein- 
Schlichting waves; the effect of wall heating or cooling on the latter type of 
instability is discussed. 

1. Introduction 
Our concern is with the instability of forced-convection boundary layers over 

horizontal heated flat plates. Such flows are unstable to at least two types of 
hydrodynamic instabilities : first we expect a convective Rayleigh-BBnard type of 
instability because the fluid at the plate is hotter than the fluid in the free stream; 
secondly we expect a Tollmien-Schlichting type of instability because of the 
similarity of the flow to isothermal boundary layers where that type of disturbance 
is known to be important. In this paper we shall primarily be concerned with the 
vortex mode of instability which we investigate in a self-consistent manner using an 
approach suggested by related work on the closely connected Gortler vortex 
problem, see for example Hall (1990) and Denier, Hall & Seddougui (1991). However, 
in the small-wavenumber limit of the vortex mode we find an unexpected relationship 
between the vortex mode and Tollmien-Schlichting waves; in effect we find that in 
this limit the two modes coalesce. We are thus able to describe both propagating 
vortex modes and determine the effect of wall heating on the growth of longitudinal 
vortex structures in boundary layers. 

Interest in forced-convection boundary layers is generated by the wide range of 
practical problem where such flows occur ; in particular we refer to the heat transfer 
problems associated with solar heating, electronic devices and nuclear reactors. In 
such situations it is important to know the parameter regime where instability begins 
because of the associated change in heat transfer properties of the flow. 
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Experimental investigations of the vortex mode of instability in a forced- 
convection boundary layer have been carried out by Gilpin, Imura & Cheng (1978) 
for water, and by Wang (1982) for air. In this paper we shall concentrate on 
boundary layers in air. In fact both Wang and Gilpin et al. have demonstrated the 
existence of the onset of a vortex mode of instability and suggested that this onset 
occurs at the same value of G, Re;: when the local Grashof number G, and Reynolds 
number Re, are varied. We also note that a related instability occurs in channel flows 
when one wall is heated; the reader is referred to the paper by Akiyama, Hwang & 
Cheng (1971) for an experimental investigation of that problem. 

Theoretical investigations of the vortex mode of instability have been given by Wu 
& Cheng (1976) and Moutsoglou, Chen & Cheng (1984). In both of these calculations, 
and all other investigations we are aware of, the growth of the boundary layer is not 
taken into account in a self-consistent manner. In effect it has been previously 
assumed that the streamwise variation of the vortex mode is on a short lengthscale 
compared to that over which the basic flow evolves. However, at  finite values of the 
Grashof number, where instability first sets in, the destabilizing buoyancy forces are 
sufficient only to provoke a response on the same streamwise lengthscale as that over 
which the basic state develops. In that case it follows that previous calculations have 
ignored a crucial property of the vortex instability ; thus the intrinsic non-parallel 
nature of the disturbance has been neglected. 

A similar parallel-flow assumption was made for many years by researchers 
concerned with the Gortler mechanism in curved boundary layers. More recently 
Hall (1983) showed that the non-parallel nature of the vortex mode at  finite values 
of the Gortler number must be accounted for by numerical investigations of the 
disturbance equations. At  high Gortler numbers analytical progress can be made 
because the growth rates become large and non-parallel effects may be neglected at 
zeroth order; see Hall (1982a, b ) ,  Denier et al. (1991). 

In this paper we shall concentrate on the vortex mode at finite values of the 
appropriate stability parameter, i.e. the Grashof number. A question of fundamental 
importance in this, and in fact any other parameter regime, is that of what is the 
physical process which triggers disturbances in the flow and causes them to amplify. 
This, the so-called receptivity problem, has been addressed for the Gortler problem 
by Hall (1990), and Denier et al. (1991). In  particular the receptivity problems for 
wall roughness and free-stream disturbances were investigated in those papers. The 
corresponding receptivity problems will be investigated here for heated boundary 
layers. 

Thus, following a formulation of the instability equations in $2, we shall in $3  
investigate the stability problem a t  finite Grashof numbers using a numerical scheme 
outlined there. In $4 we concentrate on the amplification of vortex disturbances 
induced by localized wall roughness or non-uniform wall heating. In $5 we will 
investigate the generation of vortex disturbances by free-stream inhomogeneities, 
whilst in $6 some results for distributed forcing are given. 

In $ 7 we concentrate on the high-Grashof-number limit ; this regime is relevant to 
disturbances which have passed through the order-one Grashof-number regime 
without sufficient amplification to be controlled by nonlinear effects. A t  order-one 
wavenumbers we show that the now unique growth rate is determined by an inviscid 
eigenvalue problem. However, the growth rate predicted by the inviscid theory 
increases monotonically with the wavenumber so that the fastest growing mode 
cannot be described by a purely inviscid theory. The fastest growing mode is found 
to have a high wavenumber and to be governed by a quasi-parallel theory. At small 
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vortex wavenumbers viscous effects again dominate and we show that the vortex 
mode ultimately takes on a triple-deck-like structure. This structure is shown to 
describe both vortex and Tollmien-Schlichting modes. Finally in $8 we compare our 
results with previous experimental and theoretical work and draw some conclusions. 

2. Formulation of the instability equations 
We consider the flow of a viscous fluid over a heated semi-infinite flat plate. 

Suppose that U ,  is a typical free-stream velocity, L is a typical lengthscale in the 
streamwise direction and v is the kinematic viscosity. The Reynolds number is 
defined by Re = U ,  L/v  and throughout we assume that Re % 1 .  The wall is defined 
with respect to dimensional Cartesian coordinates x*,  y*, z* by 

y* = LARedf(x*/L, Re$z*/L), 

where A is a small dimensionless constant. We take the temperature of the fluid a 
long way from the plate to be zero whilst at  the plate it is given by 

T* = T,+(T,-T,) Ag(x*/L,Reb*/L). 

Here T, is a constant reference temperature, T, is the temperature in the far-field 
region and g represents the effect of a slight non-uniform heating of the plate. 

We define the Grashof number as 

and we define a relation G between the Grashof number and the Reynolds number 

G = G, Re-$, 
by 

where 
define (5,  y, z )  by 

and a dimensionless velocity vector by writing 

is the acceleration due to gravity and p is the coefficient of expansion. We 

(2, y, z )  = (x*/L, Reiy*/L, Rek*/L) 

(u+, v+, w+) = (u*, Reb*, Reiw*)/U,. ( 2 . l a )  

We take the corresponding pressure function to be 

p +  = p ( x )  + RetGpo + Re-'( Gp, + pz + d#(x, y, z )  + O(4')) = p * / (  U: p) ,  (2.1 b )  

where p is the fluid density, p* is the dimensional fluid pressure, and for flow past a 
flat plate we have p = 1 and po = 0. We now write 

(u+,v+,w+) = ( tZ,~,O)+d(. i i ,v", t i j )+O(A~),  (2 . lc )  

and the temperature field then expands as 

(T* - T,)/(T, - T,) = Tt = T ( x ,  y) + AB(x, y, z )  + O(4'). ( 2 . 1 4  

In the forced problem for the order-A field the basic velocity and temperature fields 
E , F , T  will be known functions of x and y with the basic temperature field !i' 
determined by the choice of the basic flow field and boundary conditions on the 
temperature. The perturbed velocity and temperature fields 6, v", @, 8 depend on all 
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three dimensionless coordinates. The steady Navier-Stokes equations for the 
problem involving buoyancy forces are 
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u,** + v;. + w:* = 0, ( 2 . 2 4  

(2.2b)  
1 ap* 

u*uIz** + v*uy** + w*u:* = -- - + v( Uz**x* + u;*,* + uz***,*), 
p ax* 

u*wZ,+V*V~*.+W*V,*, = ---+g/3(T * - T,) + V(D,**x* + Vy**,* + v2*.,*), (2 .2c)  

( 2 . 2 4  

l a p *  - 
P aY* 

u*w,*.+v*w;.+w*w:, = 
1 ap* 

az* + V(W,**x* + wy**,* + W:*,*), 

where all quantities in the buoyancy term, except the density, are taken to be 
constant using a Boussinesq approximation. The energy equation takes the form 

K 
u*T,*,+v*T$+w*T* - - ( Tz*.xf + Ti*y* + T&), - pc, (2 .2e)  

where K is the thermal conductivity and C, is the constant specific heat. It is to be 
noted that, since we are considering a low-speed subsonic flow, the term representing 
the net rate at  which shearing forces perform work on the fluid is negligible. 

We now write (2 .2a -d )  in dimensionless form and consider the limiting form of 
these equations when d is small and the Reynolds number is large. 

A t  leading order O(Re-blo) we obtain 

ax+v, = 0, atzx+mi, = -px+a,y, (2.3a,  b) 

-plv+T= 0, EVx+vV, = -p 2 Y '  aTx+fl, = ( l /Pr)T, , ,  ( 2 . 3 ~ - e )  

for the basic velocity and temperature fields, where Pr is the Prandtl number defined 
by Pr = vpC,/K. At next order we obtain 

Zx+77,+G, = 0, ( 2 . 4 ~ )  

(2 .4b)  

( 2 . 4 ~ )  

(2 .4d )  

(2 .4e)  

aax + Zax + Vii, + ??a, = a,, + Zzz, 

tifix + ZFx + VfiY + %, = -9, + + f i z z  + GB", 

aG, + VG, = - 9, + G,, + G,,, 

E B " ~  + v B " ~  + cTx + cT, = (1 /Pr )  (8,, + B"zz). 
The basic flow is taken to be the Blasius velocity profile 

where f'''+fY = 0 with JO) =f"(O) = 0, f(m) = 1 .  

Then T is given by the solution of 

p + f P r  = 0, where T(0) = 1 and T(a0) = 0. 

Here the similarity variable q is defined by 

7 = Y/(2X)+. 

The basic pressure p is then zero and the basic temperature profile is then a function 
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of just 7. The boundary conditions on the order-d field are obtained by setting up 
Taylor series expansions about y = 0; we obtain 

tZ=-fZE,, v"=2?,=0, e"=g--f l f t ,  y = O ,  tZ,v",d,e"+O, ~ + c o ,  ( 2 . 5 ~ )  

a=8=0,  T = l ,  y=O, a+l,  T+O, y+00. (2 .5b)  

We assume thatf, g are such that we can write f@, = -p.(x) g(z), g - p ,  = f'..(z) O ( z )  
in (2 .5)  which enables us to Fourier transform the disturbance equations in the 
z-variable. Thus if we Fourier transform (2.4), (2.5) with a as the transform variable, 
and denote the transform of a", Q, etc. by q, u etc. we obtain 

u, + v, + iaw = 0, ( 2 . 6 ~ )  

flu, + vu, + va, + uax = u.,, - a%, (2.6b) 

av, +?Tv, + VV, + UV, = - p ,  + vYy -a% + GO, ( 2 . 6 ~ )  

ZEW, + PW, = - iap + w,, - a2w, (2 .6d)  

- 

(2.6e) 

u=qFl ,  v = O ,  w = O ,  e=QF, ,  y=O,  u , v , w , B + O  as y+m. ( 2 . 6 f )  

We now eliminate the pressure p and the spanwise velocity component w from the 
above equations to give 

Hence, given the basic velocity and temperature profiles, then by solving the system 
of equations (2 .6b) ,  (2 .6e) ,  (2 .7)  subject to the boundary conditions ( 2 . 6 f )  we can 
determine the solution of the forced-convection problem by numerical integration for 
finite values of the Grashof number. In the following section we shall describe a 
numerical scheme which we have used to integrate the disturbance equations found 
above. 

3. The numerical scheme and some preliminary results 
The disturbance equations (2 .6b) ,  (2 .6e) ,  (2 .7)  are parabolic in x and hence, having 

imposed an initial disturbance on the flow, we can march the equations downstream 
from the position where the forcing begins and monitor the vortex growth or decay. 
The partial differential equations describing the perturbed velocity and temperature 
fields were integrated using a spectral collocation method with Chebychev 
polynomials used to approximate the normal dependence of the disturbance. The 
Chebychev polynomials are defined on a E [ - 1,1] by 

Tk(U)=COS(kCOS- 'U) for k = 0 , 1 , 2  ,..., 
and we approximate the streamwise velocity component u, for example, using an nth 
degree Chebychev polynomial 

U(U)  = 5 'Tk(a), yo = 2, Y k  = 1, k = 1 , 2 , .  . ., 
k=O Yk 
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and pk are the unknown Chebychev coefficients of the expansion. The change of 
variable (x, y) to (x, q), where q = y/(2x)i, is made in the disturbance equation0 which 
are then solved on 7 E [0, q,]. The n + 1 collocation points were chosen to be 

ui = cos((i-l)n/n), 1 < i < n + l .  

We denote the value of u at 7 = qi, x - z + j B  by ui, where qi = k,(u, + 1), z is the 
position at  which the initial disturbance IS imposed, j is an integer value and cis the 
steplength in the x-direction. A similar notation was employed for the other flow 
quantities. We suppose these quantities are known at the j th  step and illustrate how 
they are advanced to x = xj+l = z+ (j+ 1)  C. Consider the x-momentum equation 
(2.6 b)  : 

'T 

where u, has been replaced by its finite-difference approximation 

We approximate u{+l by 
u, = (U{+l-u{)/C. 

T 

i = PkT k( a 1 9  

k-0 Y k  

and 

We are able to generate the successive Chebychev polynomials using the relationship 

T,+,(z) = 2ZTk(Z) - T,-,(Z) for k > 0. 

In a similar manner we can determine a relationship for the derivatives of the 
Chebychev polynomials. We rewrite (3.1) in the form 

for 1 < k < n-1 with i = 1, n + l  for each value of k. 
We use the streamwise velocity boundary conditions (2.6f) to replace the k = 0, 

k = n values in (3.2). The right-hand side of (3.2) is known and by inverting the 
square full matrix on the left-hand side using a Gauss-Jordan elimination method, 
the values of the Chebychev coefficients p k  for 0 < k < n can be determined. In  a 
similar manner we can update (2.7) and (2.6e). The method is totally implicit so 
that we expect to have a numerically stable scheme for a streamwise steplength 
comparable with the vertical steplength. Note that the use of a spectral method leads 
to high resolution near the boundaries of the flow, making this method particularly 
suitable for the solution of boundary-layer problems. We expect faster than algebraic 
decay of the error term, a property genemlly associated with the use of a spectral 
method. The spanwise velocity component w can then be calculated from the 
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continuity equation. The parameter yrn was caried and qrn = 10 was found to provide 
sufficiently accurate results. The number of collocation points n is the 7-direction was 
chosen to be 120 and the Prandtl number Pr was chosen to be 0.72, the value for air. 
The calculations were carried out on an AMT DAP510 and the code was written to 
take advantage of the architecture of that machine. 

In order to validate our scheme we carried out some calculations for the case when 
the initial form of the disturbance is imposed and not provided by a receptivity 
calculation. In  that case the boundary conditions at the plate and far from the wall 
are 

u = v = av/ay = 8 = 0, y = 0, ( 3 . 3 4  

= = av/ay  = 8 = 0, = CO. (3.3b) 
We also require 

= ufJ(y), v = VB(y), = OB(y), x = Z, (3 .4)  

where the initial conditions (3.4) describe some given vortex perturbation imposed 
on the flow a t  x = Z. This initial disturbance must be consistent with (3 .3) .  Further 
constraints on the initial perturbation (3 .4)  are required in order to avoid singularities 
in the velocity and temperature fields at x = Z, y = 0. If we expand u, v, 8 as Taylor 
series about x = Z and y = 0 we find that the required conditions are 

uZ(0) = 0, ulj(0) = a2ui(O), (3 .5a)  

e;;(o) = 0, @;;(O) = a2&(0). (3 .54  

U B  = 76e-qp, V B  = 0, 8,  = 0, x = Z, (3 .6)  

or uB = 0, vB = 0, 8, = 76e-qx, x = Z, (3.7) 

V Z ( 0 )  = 2azv;;(o), (3.5b) 

The perturbation imposed on the flow was taken to be either 

where 7 = y / (2x) i .  Note that both (3.6) and (3.7) satisfy the conditions (3 .3) ,  (3 .5) .  
The numerical scheme described in this section was used to solve the linear 
disturbance equations (2 .6b) ,  (2 .6e) ,  (2 .7) ,  subject to the boundary conditions (3.3) 
with initial conditions given by either (3 .6)  or (3 .7) .  

For the calculations reported here we took t? = 0.1. Of course the accuracy of our 
calculations was checked by varying t? and the vertical grid spacing in some cases. 
The vortex growth downstream is determined by monitoring 

and the local growth rate al(x) = (l/EJ (&!C,/ax). The neutral point was taken to be 
the downstream location where this growth rate vanishes ; the local Grashof number 
and wavenumber corresponding to this point are then obtained from 

a, = ad,  G, = GX;. 

A series of neutral points were obtained for fixed z by solving the system of equations 
numerically for several values of the wavenumber a. 

Different neutral curves were generated for fixed G =0.025 by varying the 
location z of the initial disturbance. Figure 1 (a-d) demonstrates the downstream 
velocity and temperature fields for an initial disturbance given by (3 .4)  with G = 
0.025 and a = 0.069. The corresponding neutral curves are given in figure 2. For an 
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9 t 
FIGURE 1 (u-d). The downstream development of u, w, w ,  0 for the initial disturbance given 

(3.4) with a = 0.025, a = 0.069. 

20 3i\,\ 
/ 

0.1 0.3 0.5 0.7 0.9’ 1.1 1.3 

a, 
FIGURE 2. The neutral curves for different values of z for the initial conditions (3.4). 
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FIGURE 3 (a-d). The downstream development of u, v ,  w, 8 for the initial disturbance given by 
(3.7) with (2 = 0.025, a = 0.069. 

initial disturbance of the form (3.7), the development of the velocity and temperature 
fields is shown in figure 3 with the corresponding neutral curves shown in figure 4. 
The perturbed velocity profiles for the initial disturbance given by (3.4) shown in 
figure 1 take the same form as those found by Hall (1983). The essential shape of 
the perturbed velocity and temperature components do nqt alter radically with 
increasing x. Initially the spanwise velocity component w is hroportional to Bu/az 
from continuity, since the normal velocity component v of the initial disturbance is 
zero. Hence both the streamwise velocity component u and w initially decay 
downstream of z before growing at larger values of x. The velocity and temperature 
profiles for a perturbation described by (3.7) are of a similar form but take the 
opposite sign. It is clear from figures 2 and 4 that the concept of a unique neutral 
curve is untenable and that the growth or decay of the resulting vortex structure is 
dependent upon its initial form and location. However far downstream the flow is 
disturbed, the growth rate cl(z) is initially negative. On the right-hand branch of the 
neutral curve ax - a:, but for a fixed wavenumber disturbance, a, - a: as the flow 
develops Q,/a:-+O and the flow is locally stable. Thus any disturbance of fixed 
wavelength will ultimately be stable sufficiently far downstream of the leading edge. 
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4. The localized forcing problem 
We now consider the case when the wall forcing is described by isolated forcing 

functions and therefore allow Fl(x),F2(x) to vary on a relatively fast O(E)  lengthscale. 
We write 

where e is small and we assume that the forcing starts at x = Z. By employing a faster 
streamwise lengthscale for the isolated heating function problem we will provide 
unique initial conditions for the disturbance equations. We take Fl, 2 ( x )  = FT, z ( X )  and 
choose z = t without loss of generality. This fixes the original lengthscale L in terms 
of the distance between the leading edge and the starting point of the forcing. In the 
following discussion we have also taken q = Q = 1 ; the more general case can be 
recovered by inserting these factors in our final results. In order to find the forced 
flow in a neighbourhood of zwe note that ~ u ,  - uyy for small y if y - O(&) and hence 
the convection and diffusion effects are of the same order of magnitude in a layer of 
depth &. For small y the basic velocity and temperature fields can be approximated 

x = ( X - Z ) / € ,  (4-1) 

(a, v, T )  = (Ay, py2,1+ q5y) + . . . , by 

where h = %(a, 0) ,  p = vJ%~ 0 ) ,  q5 = T($, 0) and the wall forcing implies that u, 0 are 
O(1) in the region y - O(EJ). We define 5 = y/& and assume that E = O(1). The 
appropriate expansions near the wall are then found to be 

(u, W, W ,  P, e) = (u0(x, E )  + . . . , E V ~ ( X ,  E )  + . . . , E - ~ w ~ ( x ,  6 )  
+. . . , g p o ( X , E ) + .  .. , O , ( X , E ) + . . . ) .  (4.2) 

The expansions (4.2) are substituted into (2.7), and comparing leading-order terms 
yields 

{&-A(?}% ax a t 2  = 0. (4.3) 

If we now take the Laplace transform of (4.3) with s as the Laplace transform 
variable we can show that 
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where $,(s, 6) is the Laplace transform of vo(X, E ) ,  Ai is the Airy function and A and 
B are constants. Transforming the continuity equation and evaluating it at the wall 
yields 

B = -&(s), 

where $!(s) is the Laplace transform of P:(X).  Furthermore we require that goof 
vanishes at infinity, so that 

A = - 3BAG, 

and 8, = - sF(s) { 6- 3 l d 6  ( J:"Ai (y) dy)} . (4.5) 

The transformed temperature perturbation and streamwise velocity component are 
obtained from (2.6b, e) which give 

(d2/de - A&) Go = 8, A, 

(( l/Pr) d2/dp -A,$) 8, = 8, A, 

where 8, is the transformed zeroth-order temperature field. For large 6 the 
asymptotic forms of go, J0 and 8, are given by 

(4.8~) 
(4.8b, c) 

where o = -Ai'(O). Hence the flow within the wall-layer region induces the motion of 
the fluid in the y = O( 1) region where u, o, 8 are expanded as 

u = u,Q+ ..., v = v&-g+ ..., e = o,d+. .., (4.9a-c) 

- 
go N - 3p1 s-iA-&' + . . . = - G1 s-&&&iy-' + . . . , 
8, - 3J1 s k i ,  + . . . , 8, - - 3J2 s-ki#ody-l + . . . , 

and the Laplace transforms of U,, V, and 8, are found to be given by 

J ar 
1 1  

- 
0, = - 3 + s ~ - ~ / \ - ~ m ( y , u ) + . . .  , = 3$1sgA-bnn(y,a)+ ..., (4.10a, b)  

U 

5 -  

0, = - 3 Fx s+A-Lm( y, a )  + . . . , (4.10~) a 

where m is a solution of the stationary Rayleigh equation problem 

a(di-a2)m-@'m = 0, (4.11~) 
m(0) = 1, m(co) = 0. (4.11b) 

The functions in (4.10) decay to zero exponentially as y --f 00 and satisfy the matching 
conditions (4.8). We can invert the Laplace transforms and use the large-X form of 
the velocity and temperature fields as the initial conditions for the solution of the 
perturbation equations (2.6b), (2.6e), (2.7) subject to (2.6f). For the isolated wall 
functions F;,,(X) = 6(X) ,  inversion of (4.5) and the corresponding forms for go and 8, 
yields the similarity solution 

(4.12) 

where U,, VA, 8, are known functions of E/Xi.  
We now demonstrate how the similarity solution can be obtained directly from the 

disturbance equations. The similarity variable is chosen to be 6 = y ( A / f ) i ,  where 
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0 1 2 3 4 5 6  
II 

FIGURE 5. The functions uo, vl, 0, defined by (4.15)-(4.17). 

Z = x-Z. For 5 = O(1) we expand the perturbed velocity and temperature 
components as 

Af 1 1 1 
f Ad O A53 u = - uo(5) + + . . . , v = - w (5) + vl(E) + v&) + . . . , (4.13 a, b )  

(4 .13~)  

and impose the wall conditions 

uo = .I, = vo = e, = e; = 0, (4.13d) 
The above expansions are substituted into (2.7) and at leading order yield 

+ g"; +I"' 3 0 -  - 0, (4.14) 
where a prime denotes differentiation with respect to 5. Equation (4.14) can be solved 
for v; in terms of Whittaker functions and it can be shown that there exists a solution 
of (4.14) for which wo = wI, = 8, E = 0, and such that a t  infinity vo - 1 + exponentially 
small terms. It is to be noted that the solutions of (4.14) which, for large E,  behave 
like and F6 terms do not appear in the required solution for wo. Indeed if these terms 
did occur the wall-layer solutions could not be matched in the y = O( 1)  region of the 
flow. Equations (2 .6b ) ,  (2.6e) yield a t  leading order 

The homogeneous forms of (4.15a, b )  have the eigensolutions 

uo = clEexp(-E'), do = C25exp(-Pr5'), (4.16) 
where C,, C, are arbitrary constants. It follows that, since the inhomogeneous 
solutions of (4.15) must satisfy uo = 0, 0, = 0 at 6 = 0, the algebraically decaying 
solutions of the homogeneous forms of (4.15a, b )  are required. However, if these 
solutions are retained we cannot match with the core flow, so vo must be zero. Hence 
the highest-order term in the expansion of v is wl and (2.7) then gives 

01'' + p w 9 '  + &fw'vr = 2A'{u0 +&A; + pu;} ,  (4.17) 
which has the solution v, = 4A'(uo satisfying the boundary conditions. The functions 
uo, wl, B0 are shown in figure 5 .  At leading order in the expansions of u, w and 8 it is 
clear that the disturbed flow is confined to the wall-layer region; however, at  next 

= 0. 

~ ; + f & ; , + & ~  = w,/A, (l /Pr)e;+~~ze;+@o = v0$/A2. (4.15a, b)  
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Y 
F~QURM 6. The function m(y) for a = 0.2,0.3,0.4,0.5,0.6,0.7. 

order the flow is no longer contained in the wall layer. The function u1 satisfies the 
equation 

u; + 46%; + i ~ u ,  = a2u,,/Ai, ( 4 . 1 8 ~ )  

and hence 

where 4, is the exponentially decaying solution of 

and 8, is similarly given by 
2;; + g a ;  + g?& = 0, 

exp ( - )pPr )  - - 3C2 a2 

Pr Af 8, = 

(4.18b) 

(4.19) 

Here 6, is the exponentially decaying solution of 

1 .  A 

Pr - q + g e ;  + g B ,  = 0. 

At higher order v2 is found to satisfy 

Equation (4.20) is solved subject to the boundary conditions v, = wi = 0, 6 = 0 and 
6 = constant +exponentially small terms as 6+ a. Integration of (4.20) numerically 
shows that this constant is non-zero, hence the perturbed velocity and temperature 
fields for the y = O(1) region are of the form 

where m satisfies (4.1 1). Hence it follows that (u, v ,  0 )  + 0 as y --f 00. The function 
m(y,  a) is shown in figure 6 for different vortex wavenumbers. By combining (4.13), 
(4.20) a composite disturbance field is obtained for some small value of 9 which can be 

13 FLM 246 
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FIQURE 7 (a-c). The downstream development of the functions u, v ,  w assooiated with (4.22) ; the 

curves shown correspond to values of x varying between 0.905 and 5.605 in etepe of 0.66. 

used as the initial condition for the solution of the full linear disturbance equations 
(2 .6b) ,  (2.6e), (2.7), subject to the boundary conditions (2.0f). 

The calculations we now report on were carried out using the numeriortl eoherne 
described earlier with the starting point of the calculation at 2 = 0.506 and with the 
stepsize in the 2-direction, E, equal to 0.004. In order to determine the effect8 of the 
wall forcing functions, imposed at  the position z = a, on the flow downstream of that 
point the pseudoenergy E ( z )  of the flow was monitored where 

E = fi W(z, y) + v2(z, y) + ~'(2, y)> dy 

and the local growth rate a(z) = (3E/az)/E. The position of neutral stability is 
defined as the position at which a = 0. Of course other instability criteria can be 
defined but some limited experimentation showed that ths neutral ourve ie not 
greatly dependent on the choice of flow property used to monitor the growth of the 
disturbance. Moreover, we believe that the flow property we have used i e  rt sensible 
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FIQURE 8. The neutral curves corresponding to the downstream development shown in figure 7. 
a, 

one because it accounts for the changes in all of the velocity components in some 
sense averaged across the flow field. For a given wall forcing function, G and different 
values of a the disturbance equation was marched downstream and the position at 
which the vortex structure began to grow was calculated. The local wavenumber a, 
and the local Grashof number G,  were calculated and a neutral curve in (u,, G,) space 
formed. This process was repeated for different values of G .  Two sets of initial 
conditions were considered. First the problem was solved for an initial disturbance of 
the form 

u = Eexp ( - ip),  v = -1 2EA'u, r3 = 0 imposed at x = z+0.005. (4.22) 

This type of disturbance corresponds to the situation when the vortices are 
stimulated by wall roughness; later we shall look at the case when the vortices are 
induced by non-uniform wall heating. 

The development of the velocity and temperature fields downstream is shown in 
figure 7 (a+) for G = 5 ,  a = 0.4. The corresponding neutral curves for the problem are 
shown in figure 8. We see that, as G varies, the neutral curves move around in the 
wavenumber-Grashof number plane. Our calculations show that there is a neutral 
curve corresponding to G near 2 which has the lowest minimum. Furthermore the 
minimum value of the Grashof number on that curve is about 4. When the Grashof 
number is increased or decreased from this value the curves move upwards, so the 
flow is more stable. It should be noted that the effect of changing G in the calculation 
of the neutral curves shown in figure 8 is exactly equivalent to calculations carried 
out with a fixed G but with the position where the forcing begins now being varied. 
Thus in figure 8 increasing G corresponds to moving the forcing further downstream 
from the leading edge. In  that case it is not surprising that the curves in the (u,, G,)- 
plane move upwards since the forcing cannot initially generate an unstable vortex 
since the form of the initial disturbance is not typical of a growing vortex flow. 
Likewise when G is decreased in figure 8 the forcing is being moved progressively 
towards the leading edge; the fact that the curves move upwards in this case again 
implies that roughness near the edge has a relatively weak effect on the flow. In  an 
experiment one would expect that localized roughness elements would be distributed 
at several sites along the wall so that the most dangerous mode would be the one 
excited. We postpone a discussion of the available experimental results until the final 
section of this paper. 

13-2 
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FIGURE - ,a+). The downstream development of the functions u, w, w associatec with (4.23) ; the 

curves shown correspond to values of x varying between 0.905 and 5.505 in steps of 0.66. 

In  fact the discussion given above applies equally well to the case when the forcing 
corresponds to a localized temperature variation at  the plate. In  particular for the 
problem with 

u = 0, v = Sch’(gexp ( -Be3)), 0 = cexp ( -$c3Pr) imposed at z = 2+0.005 
(4.23) 

we now find that the most dangerous disturbance occurs when G is close to 8 whilst 
the local Grashof number corresponding to this most dangerous mode is about 2. The 
downstream development of the velocity and temperature fields is shown in figure 
Q(a-C). The corresponding neutral curves are shown in figure 10. Again for large 
values of G we can see that the forcing applied does not initially generate unstable 
vortex structures. It is also clear that the forcing becomes less dangerous when it is 
moved close to the leading edge. In each of the above calculations it was found that 
the dimensionless energy E decreases by several orders of magnitude before the 
growth rate a becomes positive. This means that the forcing applied generates 
vortices which decay significantly before they begin to grow. Hence a localized wall 
forcing function is not a particularly efficient means for the production of longitudinal 
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FIQURE 10. The neutral curves corresponding to the downstream development shown in figure 9. 
a, 

vortices. However, note that, despite being an inefficient generator of longitudinal 
vortex rolls, in the absence of other forcing modes an isolated wall-heating forcing 
will result in vortex growth downstream. We conclude this section by noting that if 
instability is caused by isolated wall roughness or non-uniform wall heating then we 
expect instability to occur when the local Grashof number exceeds about 2.  

5. Free-stream disturbances 
We shall now consider the generation of vortex structures due to a free-stream 

longitudinal vortex field impinging on the leading edge rather than imposing some 
initial disturbance on the flow. This analysis closely follows the work of Hall (1990) 
on the receptivity problem for Gortler vortices. 

We take the stream velocity component to be of the form 

u = 1 + A  eiazuc(y), x = 0, (5.1) 
and hence we have assumed a dependence of the impinging vortex structure on the 
boundary-layer lengthscale. However it will later be shown that the case of u, 
independent of y gives rise to the most dangerous vortex mode. We consider u, to be 
of the form u,(y) = cos (by+#) ,  where b and # are constants so that the disturbance 
is periodic in both the y- and z-directions. We need to consider two regions, 
the boundary layer y - xz and also an outer region y - O(1). This is because the 
wavelengths in the spanwise and normal directions are large compared with the 
boundary-layer scale xi. 

Consider the boundary-layer region y - xi with x Q 1 and allow y / x i +  a. The 
disturbance equations (2.6), (2 .7)  may be written in the form 

a”u 
(2x)p (2X)t’ 

P a {a;-az}v = a2Ge+-u,,+- P jai-aZ-3 -- ( 5 . 2 ~ )  I ‘ (2x9  I /  

where P = lim (qf‘- . f ) ,  
11+a 

is the Blasius constant. 

(5 .3)  
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We require a solution of (5.2~-c) which will maintain the periodicity 2nlb in the 
y-direction, and hence we take 

u = u P = e-“zcOs(by+$-ba(2x)t), ,g = ,g P 1  = e e(-v:xlPr) cos (by + $ - bP( 2~)1), 
(5.4a, b) 

a2) + kl e-v:x - v4( a2G4Pr 1 - Pr) e-v:xIP‘ }eos(by+$-b/3(2x)~) for Pr 4 1, 1 
(5.44 

P(bz-az))  + k,} e-”iZ cos (by + $ - bp(2x);) for Pr = 1, 
v = vp = {+Gels+ 1 

V l  (2.); 
(5 .44 

where $: = a2+b2 and el, k, and k, are arbitrary constants. Note that the 
exponential functions of x appearing above should also be formally expanded in 
powers of x but it is more convenient to not do so and use the equally accurate forms 
given above. 

= Q(x) e-ay, for arbitrary &(x) and this 
solution is needed in order to match with the boundary-layer solution. Hence the 
appropriate solution of (5 .2~)  is 

(5.5) 
and it is to be noted that the boundary-layer structure causes the periodic form of 
v to occur only when ay %. 1 .  For the region where x = O( 1) and ay 9 1,  at the edge 
of the boundary layer, we must solve the disturbance equations subject to 

(5.6) 
We now consider the 7 = O( 1 )  region with x < 1 and we determine &(x) by matching 
with the boundary-layer solution. The functions u, v and 0 are obtained from 

There is an eigensolution of (5.2c), 

v = vp + Q(x) e-ay, 

(u, v, 0)  = (up, vp, BPI. 

expansions in powers of xi in the disturbance equations by perturbing the basic flow 
in the form 

(5.7a, b) u = COS ${fi +7/2p> + . . . , e = cos + 7 1 2 ~ 7  + . . . , 
cos $ 
(2x)i 

v = -  {+/F -f ) + 7”2f’”> + . . . , (5.74 

where 

Matching with the boundary-layer solution for 7 9 1 yields 

h(7)  satisfies h”’ = -Prf%”, 
and, as 7+ co, v+cos$p/[2(22)~]. 

( 5 . 7 4  

(5.8) 

A composite solution is formed, from the y - xi and y - O(1) solutions, for small x 
to give the asymptotic forms for u, v and 8, and hence initial data for the solution 
of the disturbance equations using the numerical scheme starting at a small value 
of 5. 

We note that when $ = 0, the function u, takes the form u, = cos (by) which means 
that the incoming vortex field does not satisfy the no-slip condition at the wall. 
Hence we choose $ to be zero since this relates to the most physically relevant case 
corresponding to u,(O) =k 0. We again monitored the dimensionless energy E(x) of the 
flow where 
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RQURE 11 (a-c). The downstream development of u, v, 8 for the free-stream receptivity problem. 
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FIGURE 12. The neutral curve for the free-stream receptivity problem with b = 0. 
a, 
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FIQURE 13. The neutral curve for the free-stream receptivity problem with b = 0.2. 

and the local growth rate @(x) = (aE/Bx)/E. The position of neutral stability is 
defined as the position at which B = 0. 

For the receptivity problem formulated above, the disturbance equations were 
marched downstream using the numerical scheme described in $3. The steplength in 
the streamwise direction was taken to be 0.00001, this very small value being 
necessary, in the numerical scheme chosen, owing to the singular behaviour of w 
and x. 

The profiles for the disturbance velocity and temperature components as the 
vortex develops downstream are shown in figure 11 (a-c). We can see that the edge 
velocity for the streamwise velocity component decreases monotonically with 2 as 
does the temperature component. The normal velocity component w at the edge of 
the boundary layer is seen to  increase as we move downstream; however, for larger 
values of x the edge velocity begins to decrease with x owing to the exponential factor 
in (5 .4~ ) .  In figures 12 and 13 the local Grashof number and the local wavenumber 
have been calculated at the points of neutral stability where the local growth rate 
vanishes; this enables us to generate neutral curves in the local wavenumber - 
Grashof number space. For these two cases the parameters chosen were G = 70, 
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8, = 1. We conclude from these calculations that instability first occurs when b = 0 ;  
in fact further calculations for different values of b produced neutral curves located 
above that for b = 0. We deduce that u, - cosuz is the most dangerous form for the 
incoming vortex field. We conclude from figure 12 that free-stream disturbances are 
able to cause the onset of instability when the local Grashof number is bigger than 
about 0.02; this is significantly lower than the critical Grashof number associated 
with isolated wall forcing. 

6. Distributed roughness 
We shall now consider the effects of wall heating on the forced-convection flow 

when the wall forcing is described by a non-localized forcing function and occurs on 
an O(1) streamwise lengthscale. Again we concentrate on the 0(1) wavenumber 
regime. The linearized disturbance equations (2 .6b) ,  (2.6e), (2.7) were solved together 
with the boundary conditions (2.6f), where F,(x) is given by 

, x > g ,  (6.1) F~ (x) = 4 0 ( ~  - e-20(~-1/2)' 

and F, = 0 so that the vortex is induced by wall roughness rather than non-uniform 
wall heating. Given a function q(a) the disturbance equations can be marched 
downstream from x = 0 for various values of a using the numerical scheme described 
in $3 with no initial disturbance. We then invert this transformed flow field in (a ,  z, 
y)-space to give the flow field in (2, x, y)-space induced by a forcing function of height 
proportional to Q(z),  the inverse Fourier transform of q(a). A symmetric obstacle Q(z) 
was considered with ~ ( x )  = $&exp(-&z2), 

and q(a), the Fourier transform of (6.2), is given by 

q(a) = gexp ( --a2). 

t 6.2) 

(6.3) 

We then combine (6.1) and (6.3) to give the boundary conditions (2.6f) in (a,x,y)- 
space. The disturbance equations were marched downstream and 8*(a, x, y), the 
maximum value of 8, was calculated. This procedure was repeated for various values 
of a and the transform in z was then inverted numerically to give 8*(z,  x, y). The 
parameters chosen were x varying between 0 and 10 whilst z varies between 0 and 10. 
The calculation was repeated for different values of the Grashof number G. 

The velocity and temperature profiles for the symmetric obstacle are shown in 
figure 14 (a-c) for G = 8, a = 0.45. Note that the maximum value of 8 occurs initially 
at  the wall and, as x increases, its position moves away from the wall. 

For a distributed wall forcing function there is a strong coupling between the 
induced vortex field and the wall forcing, with the ratio between the two being a 
function of the wavenumber and the Gortler number. In principle we could maximize 
the coupling between the vortex field and the forcing by varying a and G though this 
would require a large-amount of computer time. 

The contours of 8*(z,x,y) are shown in figure 15(a-d), demonstrating that 
immediately after the obstacle the perturbed temperature field decays and is formed 
into a wake solution behind the obstacle. However, further downstream the effects 
of thermal instability due to the heated wall reamplifies this disturbance into 
longitudinal vortex rolls. The distance between the reamplification of the disturbance 
and the obstacle decreases as we increase the Grashof number. The same effect could 
have been demonstrated by following the same method as in $5 by fixing the Grashof 
number and varying the position a t  which the forcing was first applied. 
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FICWRE 14(a-c). The development of u, v, 0 for the obstacle given by (6.1). The results shown 

correspond to G = 8, a = 0.45. 

The same calctllations were repeated for an asymmetric obstacle of the form 

i j ( z )  = &$zexp ( -&z2) .  (6.4) 
The results are shown in figure 16(a-d). A similar flow structure to that of the 

symmetric obstacle was observed with the perturbed flow field formed into a wake 
before subsequently being reamplified further downstream into longitudinal vortex 
roll structures. Again the distance of the resulting vortex structure from the leading 
edge is dependent upon the Grashof number. Note that similar flow structures have 
been reproduced experimentally by Mangalam, Dagenhart & Meyers (1991) for the 
analogous Gortler-type vortex problem. 

7. The high-Grashof-number limit and the fastest growing mode 
At high values of the Grashof number we expect that viscous effects will be 

negligible except at low or high vortex wavenumbers. We follow the approach of 
Denier et al. (1991) who consider the most unstable Gortler vortex. An examination 
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FIGURE 15. Contours of constant 8* for the obstacle given by (6.1), (6.2) for (a) G = 2, 
( b )  G = 5, (c) G = 8, (d )  G = 12. 
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Z 

FIGURE 16. Contours of constant 8* for the obstacle given by (6.1), (6.4) for ( a )  G = 2 ,  
( b )  G = 5, (c) C = 8, ( d )  G = 12. 
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of (2.6) for G % 1 with a held fixed suggests that inviscid disturbances have a, - Gi; 
we are therefore led to the expansions 

where u,, vo, etc. are functions of x and y only whilst ,8 expands as 

b = at, + bl G-i + . . . . (7.2) 

If the above expansions are substituted into (2.6) and the dominant terms are 
retained in the limit G +  co we obtain 

~ouo+voy+iawO = 0, ~ o ~ u o + v o t i g  = 0, (7.3a, b)  

(7.3 c-e) j 0  avo = -pou + e,, 8, i z ~ ,  = - iap,, po ae, + vo T~ = 0, 

and we can eliminate uo,  wo, p ,  and 8, from this system to give 

a[voyu - a",] - auu vo = (a2Tg/p; a)  vo. (7.4) 

This equation must ke s$ved subject to vo = 0 a t  y = 0, co and this specifies an 
eigenvalue problem Po = p,(a). 

Thus in the inviscid limit the growth of the disturbance is governed by a quasi- 
parallel stability problem since in that case the disturbance varies on a relatively 
short, G-i, lengthspale in the x-direction. We shall restrict our attention here to the 
determination of Po ; higher-order terms in the expansion of the growth rate can be 
obtained in a routine manner. Note that we have assumed that there are unstable 
solutions of (7.4); this is assured if there are regions where T' < 0 in 0 < y < co. 
The numerical solution of the eigenvalue problem specified by (7.4) together 
with the conditions vo = 0, y = 0,co is made non-trivial because of the singularity in 
the equation a t  y = 0. An examination of (7.4) for y < 1 shows that for y < 1,  vo - yi. 
In fact (7.4) is more easily solved by making the transformation q = (l/EJx, 0)) logy 
and the results presented below were obtained using that transformation. 

In  figure 17 we show the most unstable eigenvalue for Pr = 1. It can be seen that 
the growth rate increases monotonically with a. The eigenvalue shown is in fact just 
one of an infinite sequence of unstable modes. For small a we see that the grpwth rate 
goes to zero like some power of a ;  actually our calculations suggest that Po - a; for 
a < 1 and this asymptotic limit will be considered later in this section. In  figure 18 
we show vo(y) for three different values of a ;  note that the disturbance becomes less 
concentrated as a decreases. Now we investigate further the inviscid problem a t  large 
wavenumbers. This will enable us to identify the scale on which viscous effects come 
into play and therefore we will be in a position to identify the fastest growing mode. 

For large values of a the terms vogy, a2vo in (7.4) are comparable in a thin sublayer 
of thickness a-'. We shall therefore seek a solution of (7.4) within a layer of depth a-l 
at the boundary ; we therefore define 

and note that a, T expand as 
5 =  ay, (7.5) 

a=p[a-l+ ...) I f =  l-w[a-'+ .... ( 7 . 6 ~ )  b)  

In order that the dominant terms on the left-hand side of (7.4) are comparable with 
the term on the right-hand side we must write 

po=apoo+ .... (7.7) 
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FIGURE 17. The most unstable inviscid eigenvalue associated with (7.4). 

The zeroth-order approximation to the eigenvalue problem for so then reduces to 

( / % o P 2 / W ) I ~ o g - ~ o }  = - v o s 2 ,  wo=o, 5=o,co .  (7.8) 
The solution of (7.8) can be expressed in terms of modified Bessel functions of 
imaginary order. Since our primary aim a t  this stage is to see how viscous effects 
come into play it ispot necessary for us to solve (7.8) ; in fact we can, if necessary, 
infer the value of Boo from the limiting small-wavenumber approximation to the 
viscous calculations to be discussed next. 

The large-a inviscid analysis given above must, of course, break down when 
aa, - ay2 in which case viscous effects cannot be ignored. This balance is achieved 
where a N Gi so we now write 

a = Gid, 
and modify (7.1) to give 

[u, G - f ,  Gaw, G-ip, 01 = [ (Go ,  8,, Go, go,  h0) + . . .] exp p Giadx,  (7.9) 

where Go, 8,, etc. are functions only of x and 5 defined by (7.5). The eigenvalue snow 
expands as 

(7.10) 

and the zeroth-order growth rate is found to be determined by the eigenvalue 
problem 

Po Go + &ao,+ idGo = 0, (7 .11~)  
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FIQURE 18. The eigenfunctions associated with (7.4) for different values of the wavenumber. 

Here the operators 3 and A’” are defined by 

A more convenient form of the disturbance equations can be obtained by eliminating 
5, and 12, to give 

9 4 ,  = ,~8,/6~, 9(q- l )S,  = 6,,/hZ, A’”6, = -(Prw/62)80 (7.12a-c) 
(7.12d) 

A point that should be noticed here is that the 2 momentum equation decouples from 
the other equations sp that the eigenrelation is determined by the sixth-order system 
associated with 6,,00. It is also possibJe to scale p and w out of the above 
eigenvalue problem by redefining Ci. and /3. In  figure 19 we show the most unstable 
eigenvalues of (7.12) for Pr = 1 ; the results shown were obtained using a fourth-order 
finite-difference scheme to discretizc the differential equations for 8, and 6,. 

For small values of 6 we see that /3, - 6 so that we obtain the required match with 
the large-wavenumber limiting form of the inviscid mode. The growth rate attains a 
maximum at a finite value of 6 and then passes through zero at a sufficiently large 
value of 6. In  fact this zero of the growth rate corresponds to the right-hand branch 
of the neutral curve in the Grashof number-wavenumber plane. Actually it is only 
possible to find solutions of (7.12) with /3, + 0 ; the case /3, = 0 corresponds to the case 
when -6, = 4/62, -6, = (Prw/ci2) B,, 

so that d4 = Prw which means that the zeroth-order approximation to the right-hand 
branch of the neutral curve is given by 

G = a4/Prw + . . . . (7.13) 

A ” ”  

U, = V, = V, = 6, = 0, 5 = 0 , ~ .  
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FIGURE 19. The growth rate of the fastest growing viscous mode as a function of wavenumber. 

An investigation of (7.12) with bo 4 1 shows that the wall layer becomes thicker in  
this limit and higher-order terms in (7.13) can be found when it has become O(G-8); 
the structure in that case is similar to that found by Hall ( 1 9 8 2 ~ )  for the Taylor 
problem. 

In figure 20 the eigenfunctions .",,6, are shown for three different values of the 
wavenumber. We note that at the largest value of the wavenumber the eigenfunctions 
have spread further away from the wall whilst at the smallest wavenumber the 
temperature disturbance develops a wall-layer structure consistent with the inviscid 
limit discussed above. Thus we have shown above that a t  high Grashof numbers the 
fastest growing disturbance is localized a t  the wall and is dominated by viscous 
effects. The unstable band of wavenumbers cuts out at the right-hand branch of the 
neutral curve where a - (PrwG)i. For a - 0(1) the disturbances are essentially 
inviscid with a growth rate which leads to zero where a+O. At some stage viscous 
effects will reappear for sufficiently small a and then we expect that the left-hand 
branch of the neutral curve will be encountered. Though the growth rates in this 
regime are relatively small i t  is important for disturbances localized very close to the 
leading edge of the wall since the effective wavenumber of a fixed-wavelength 
disturbance is small there. In addition there is an unexpected connection between 
vortex disturbances and Tollmien-Schlichting waves here, so this is now considered 
in some detail. As a first step we consider the limiting form of (7.3) where a+O. It 
is clear from (7.4) that we must consider separately the regions y = O(1) and y = 
O(a-l). For y = O(1) we write 

u = u,+uu,+ ... , v = ah,+ah,+ ..., w = ah+,+a~ww,+ ..., (7.14u-c) 
0 = 0,+a/3,+.. ., p = po+apl+.  ..) (7.144 e) 

p -p (7.15) 
and then expands as ,- a2+p'a+ .... 
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FIGURE 20. The eigenfunctions of (7.12) for different values of the wavenumber, Pr  = 1. In  (b) the 
eigenfunction associated with the smallest wavenumber has been magnified by a factor of 1OOO. 

If we now substitute the above expansions into (7.3) and solve the leading-order 
approximation to  this system we find that 

uo = -tiy, vo = p a ,  8, = -pY, p ,  = - T + L  (7.16 a d )  
- 

Meanwhile in the upper, O(a-'), layer we can easily show that 

p = e-ay+. . . , v = - (ai/@) e-ag + . . . . (7.17 a ,  b )  

Thus we can only match the expansions for v in the two layers if 

(p)z = 1 

so that for small a the eigenrelation associated with (7.3) takes the form 
1 

p,=ai+ .... (7.18) 

The small-a inviscid solution discussed above fails when fia, - 3; in the layer of 
depth a+l adjacent to  y = 0. This occurs when a - G-f and we then have a triple- 
deck-like structure with three layers of depth O(G-f), 0(1) and O(G4) to  consider. 
(Note that the structure described below applies also to the Gortler problem and was 
alluded to by Denier et al. 1991.) We therefore write a = G-h. 

In  order to allow for the possibility of unstable Tollmien-Schlichting waves we 
must modify (2.6) to  allow for the possibility of time-dependent modes. This is 
simply done by inserting the term ut into the momentum equations and the term 8, 
into the temperature equation. In  the lower deck where y = O(G-3) we define 6 = G4y 
and write 

{u, G-iv, G-tw, G-lp, 8} = {(u,, v,, w,, p , ,  8,) + . . .} exp p [Bdx- ifit], 
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where /3 = Po G; + . . . , a = QG; + . . . , whilst uo, vo, etc. are functions of 5, x. We assume 
that the frequency 52 of the disturbance is constant. The equations to  determine the 
zeroth-order approximation to  the disturbance in the lower deck are found to be 

~ouo+vo,+iawo = 0, -iOuo+~op~u,,+vo,u = uoM, 0 = pot, (7.19u-c) 

-iQwo+bo,u<wo = -ipoa+wofs, - i O B o + ~ o p ~ ~ o + v o w  = (1/Pr)BOcE, (7.19d, e) 

A A  

which must be solved subject to 

uo = vo = wo = Bo = 0,  E = 0, (7.20) 

and appropriate matching conditions at 5 = 00. Thus in the lower deck we have that 

where is a constant, q5 = (p,d,,)~(E-iO/,ubo), g50 = q5(5 = 0), A = bop and Ai is the 
Airy function. I n  the main and upper decks the disturbance takes on essentially the 
same form as that discussed above for the small-u limit of the inviscid problem. In 
particular we find that in the main deck 

p = CG{(&a)-q, u = -CU Y’ 
where C is a constant. 

Thus matching between the main and lower decks is achieved if 

which leads to the eigenrelation 

(7.21) 

We note that if we take the further limit a+00 we recover the limiting inviscid 
solution (7.18) whilst in the limit a+O we obtain 

(7.22) 

and this eigenrelation can be found from the limiting 1arge;wavenumber analysis of 
Hall & Smith (1984). I n  fact, rather than solve (7.21) for Po as a function of C, it is 
more instructive to rewrite this equation using the inverse of the spanwise 
wavenumber rather than G as the appropriate large parameter. In  order to do this 
we write 

G = G0a+,  /3 = $*a+, O = Q*aP2 
” A  

in which case (7.21) becomes 

- ii{ - Go + b * 2 }  x = Ai;, (7.23) 

where x = 1 I Ai (7) dy, Ai; = Ai’ ( - i b * b l ) .  (7.24) 

If we set Go = 0 in (7.23) the resulting equation determines the scaled growth rate of 
a three-dimensional Tollmien-Schlichting wave of frequency O*. By varying Go in 

m 

- i~~*pd 
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FIGURE 21. The neutral eigenvalues given by (7.26). 

the range - 00 < Go < m we can then infer the effect of heating or cooling on very 
oblique Tollmien-Schlichting waves. Alternatively, by setting a* = 0 we can obtain 
the required match with the inviscid low-wavenumber modes discussed earlier. In 
fact we can see directly from (7.24) that, if G,* B 1 with Sz* held fixed, then the 
zeroth-order approximation to the eigenrelation is simply 

(7.25) 

This corresponds to the limiting inviscid form (7.18) and we also deduce that 
instability occurs only for positive Grashof numbers. Now we shall present results for 
the solution of (7.23) for a range of values of G. It is well known that neutral solytions 
of (7.23) oFcur yhen Aik/X = Nii with N x 1.001. Thus the neutral values of /3* are 
given by B* = is: where 

k + ~ ~  = N,&. (7.26) 

The solutions of this equation are shown in figure 21. The frequency Sz, associated 
with each of the neutral points is given by 

a0 = Gi + . . . , Go > 0. 

Sz, x -ii2.298pN. 

Thus neutral solutions exist only for non-zero frequencies, although we note that for 
Go c 0, IGol % 1, equation (7.23) yields 

The leading-order term here reproduces the leading-order neutral inviscid result 
appropriate to negative Grashof numbers whilst the second viscous term always has 
negative real part so that the flow is stable in that case. The latter result holds for 
all frequencies. 
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FIGURE 22(a,  b).  The real and imaginary parts of a* as functions of a*. 

In figure 22 we show the dependence of j* on the frequency S2* for a range of 
values of the sca1:d Grashof number Go. We see that the mode with Go = 0 is unstable 
for sZ* > 2.298,/3* > 1.  Between S2* = 0, 2.298 the mode is stable but we note that 
the growth rate approaches zero when S2*+0. If Go is now taken to be slightly 
positive then this limiting neutral point moves to a small positive value of S2* and 
there is then a small but finite band of unstable disturbances of small frequency. 
When Go is increased beyond about 0.06 this unstable band connects with the other 
unstable band corresponding to the modes with S2* > 2.298 for G = 0. At this stage 
there are no neutral solutions and as Go is increayd the growth rates at small 
frequencies increase and approach the limiting case p* = lGol3 for Go %- 1 .  However, 
a t  any fixed value of Go, we see that the growth rate asymptotes to its 
Tollmien-Schlichting wave value at sufficiently large values of 9*. We conclude that 
wall heating has a progressively increasing destabilizing effect on Tollmien- 
Schlichting waves. 

If the wall is instead cooled, so that the Grashof number is negative, then the 
stable band of mpdes in the interval 0 < 52* < 2.298 for Go = 0 increases with the 
neutral value of/3,* given by /3,*lGoli when Go + - co. However, we again note that for 
any given value of Go the growth rate approaches the Tollmien-Schlichting value at 
large values of S2*. 

8. Conclusions 
We shall first consider the conclusions to be drawn about the generation of vortex 

structures by surface imperfections when the spanwise lengthscale is comparable to, 
but shorter than, the body lengthscale. We have demonstrated how the vortices 
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develop in a non-parallel manner and shown that a unique growth rate does not exist 
for a growing vortex structure. We have also shown the neutral curve associated with 
a particular flow property depends on the upstream history of the disturbance. 

In $4 we have discussed the localized forcing problem when the forcing operates on 
a short streamwise lengthscale. It was shown, for a forcing function of the type 
considered in $4, that the forcing has the effect of producing a similarity solution of 
the linear disturbance equations in the region where the forcing is applied. The 
similarity solution can then be used to form a composite disturbance field associated 
with an isolated forcing function; if the Grashof number is then varied we can 
determine the effect of the location of isolated forcing on the onset of instability. Our 
results show that there is an optimum position for the forcing which will produce 
instability at the lowest value of the local Grashof number, this lowest value is 
about 2. 

In $5 we have considered the free-stream receptivity problem. We have 
demonstrated the growth of vortex structures downstream and have shown that the 
receptivity calculation with b = 0 leads to the most dangerous mode. In  this case 
u, - cos az at the leading edge of the wall. The explanation of this may be that if the 
disturbance develops in some type of quasi-parallel fashion then for higher values of 
b the incoming disturbances stimulate the higher modes, which are more stable. It is 
of interest to note that free-stream disturbances provoke instability at a much lower 
Grashof number than do roughness induced motions. It would appear then that, in 
an experiment where care has been taken to reduce the size of disturbances from all 
sources, it will be the free-stream ones which cause the growth of streamwise vortices. 

For the case where the forcing varies on the body lengthscale as discussed in $6 we 
have demonstrated how the initial disturbance decays and is formed into a wake 
before its subsequent reamplification within a wedge-shaped region further 
downstream. We have noted that this type of flow structure has been observed 
experimentally for the related Gortler-type vortex problem of flow over a concave 
wall. In fact the results of Gilpin et al. (1978) are also consistent with this picture. 

The results found in $ 7  show an unexpected coupling between streamwise vortices 
and Tollmein-Schlichting waves at  low spanwise wavenumbers; in fact in that 
regime the two types of disturbances are virtually indistinguishable. Though 
disturbances with much higher growth rates are possible at high Grashof numbers, 
these low-wavenumber disturbances might be particularly relevant when the forcing 
mechanism which generates the vortices operates on a long spanwise scale. Moreover 
it could well be that, even though larger linear growth rates are possible downstream 
where the local wavenumber has become O(Gi), the disturbances might be sufficiently 
amplified near the left-hand branch of the neutral curve for nonlinear effects to come 
into play. In that case the fact that larger linear growth rates were available 
downstream would be irrelevant. 

We now make some further comparisons with previous theoretical and ex- 
perimental results. In  order to make such comparisons it is convenient to define the 
parameters 

Qr, = g & , ~ * ~ / v ~ ,  Re, = U ,  x*/,u. 

The local Grashof number in our notation, G,, is then given by G, = Gr,Re;k Thus 
if the instability is caused by wall forcing we expect that instability will occur 
whenever Gr, Reit > - 2. Wu & Cheng (1976) made a parallel-flow stability analysis 
of the Problem investigated here and found that for air instability occurred for 
Gr, Reirk 292. Later results given by Moutsoglou et al. (1981) contradicted those of 
Wu & Cheng and figure 1 of their paper suggest instability at zero Grashof number. 
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This result is not unlike some of the physically unrealistic results given by parallel- 
flow theories of Gortler vortex growth. In  order to remove this difficulty Moutsoglou 
et al. retained higher-order buoyancy effects even though they are formally negligible. 
The latter approach is equivalent to the attempts made to alleviate the corresponding 
Gortler problem by retaining higher-order curvature effects. Our results show that if 
non-parallel effects are accounted for in a self-consistent matter then instability 
occurs at  a finite Grashof number and the difficulty is not present. 

Wang (1982) investigated experimentally the onset of the vortex instability ; his 
results suggest that instability occurs for Gr, Re;; 2 55. This is not consistent with 
our prediction which has the $ power replaced by t .  We presume that the 
expetimental result is not consistent with ours because of the uncertainty associated 
with identifying the onset of vortex activity. 
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